Source Domain Subset Sampling for Semi-Supervised Domain Adaptation in Semantic Segmentation

نویسندگان

چکیده

In this paper, we introduce source domain subset sampling (SDSS) as a new perspective of semi-supervised adaptation. We propose adaptation by and exploiting only meaningful from data for training. Our key assumption is that the entire may contain samples are unhelpful Therefore, can benefit composed solely helpful relevant samples. The proposed method effectively subsamples full to generate small-scale subset. training time reduced, performance improved with our subsampled data. To further verify scalability method, construct dataset called Ocean Ship, which comprises 500 real 200K synthetic sample images ground-truth labels. SDSS achieved state-of-the-art when applied on GTA5 Cityscapes SYNTHIA public benchmark datasets 9.13 mIoU improvement Ship over baseline model.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semi-supervised Domain Adaptation for Weakly Labeled Semantic Video Object Segmentation

Abstract. Deep convolutional neural networks (CNNs) have been immensely successful in many high-level computer vision tasks given large labelled datasets. However, for video semantic object segmentation, a domain where labels are scarce, e↵ectively exploiting the representation power of CNN with limited training data remains a challenge. Simply borrowing the existing pre-trained CNN image recog...

متن کامل

Semi-Supervised Kernel Matching for Domain Adaptation

In this paper, we propose a semi-supervised kernel matching method to address domain adaptation problems where the source distribution substantially differs from the target distribution. Specifically, we learn a prediction function on the labeled source data while mapping the target data points to similar source data points by matching the target kernel matrix to a submatrix of the source kerne...

متن کامل

Co-regularization Based Semi-supervised Domain Adaptation

This paper presents a co-regularization based approach to semi-supervised domain adaptation. Our proposed approach (EA++) builds on the notion of augmented space (introduced in EASYADAPT (EA) [1]) and harnesses unlabeled data in target domain to further assist the transfer of information from source to target. This semi-supervised approach to domain adaptation is extremely simple to implement a...

متن کامل

Frustratingly Easy Semi-Supervised Domain Adaptation

In this work, we propose a semisupervised extension to a well-known supervised domain adaptation approach (EA) (Daumé III, 2007). Our proposed approach (EA++) builds on the notion of augmented space (introduced in EA) and harnesses unlabeled data in target domain to ameliorate the transfer of information from source to target. This semisupervised approach to domain adaptation is extremely simpl...

متن کامل

Sample-oriented Domain Adaptation for Image Classification

Image processing is a method to perform some operations on an image, in order to get an enhanced image or to extract some useful information from it. The conventional image processing algorithms cannot perform well in scenarios where the training images (source domain) that are used to learn the model have a different distribution with test images (target domain). Also, many real world applicat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Social Science Research Network

سال: 2021

ISSN: ['1556-5068']

DOI: https://doi.org/10.2139/ssrn.3990644